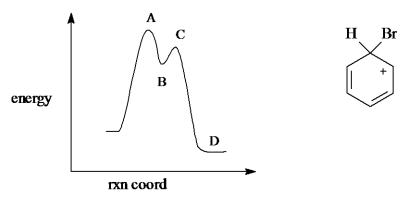
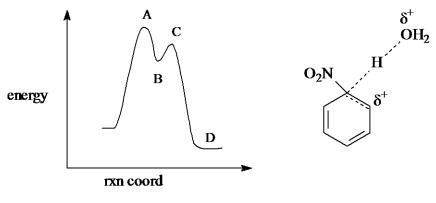
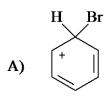

ACS Review Reactions of Arenes - Electrophilic Aromatic Substitution

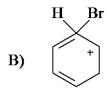

1. Which one of the following is the electrophile in the reaction shown below?

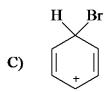
- A. benzene
- B. NO_3^-
- C. NO_2^+
- D. H_2SO_4
- 2. What is the electrophile in the Friedel-Crafts alkylation reaction below?

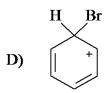


- A. AlCl₃
- B. Cl
- C. benzene
- D. $(CH_3)_3C^+$
- 3. Which point on the potential energy diagram corresponds to the species shown to the right for the electrophilic bromination of benzene with $Br_2/FeBr_3$?

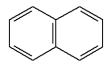

- A. A
- B. B
- C. C
- D. D
- 4. Which species below best depicts the electrophile in the FeBr₃-catalyzed bromination of benzene?
 - A. Br_2
 - B. FeBr₄
 - $\delta^{+}\delta^{-}$
 - C. Br--Br--FeBr₃
 - D. FeBr₃
- 5. Which one of the following reactions does <u>not</u> give *tert*-butylbenzene?

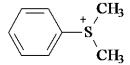

- A. benzene + $(CH_3)_3CCl/AlCl_3$
- B. benzene + $(CH_3)_2C=CH_2/H_2SO_4$
- C. benzene + $(CH_3)_3CH/AlCl_3$
- D. benzene + $(CH_3)_3COH/H_2SO_4$
- 6. Which point on the potential energy diagram corresponds to the species shown to the right for the electrophilic nitration of benzene with HNO₃/H₂SO₄?




- A. A
- B. B
- C. C
- D. D
- 7. What is(are) the product(s) of the following reaction?

- A. $C_6H_5CH_2CH_2CH_3$
- B. $C_6H_5CH(CH_3)_2$
- C. $C_6H_5CH_2CH_2CH_2C1$
- D. a mixture of C₆H₅CH₂CH₂CH₃ and C₆H₅CH(CH₃)₂
- 8. Which one of the following is not a resonance form of the cyclohexadienyl cation intermediate in the bromination of benzene?

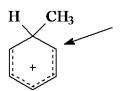




- A. A
- B. B
- C. C
- D. D
- 9. How many mononitration products are possible in the nitration of naphthalene, shown below?

- A. only 1
- B. 2
- C. 3
- D. 4
- 10. Rank the following compounds in order of decreasing reactivity to aromatic electrophilic bromination.
 - I. benzene II. toluene III. benzoic acid IV. phenol
 - A. IV > II > I > III
 - B. IV > III > II > I
 - $C. \qquad II > I > IV > III$
 - D. II > III > IV > I
- 11. Which of the following groups are ortho/para directors?
 - I. $-NO_2$ II. $-OCH_3$ III. $-CO_2CH_3$ IV. $-CH_3$
 - A. I and III
 - B. II and III

- C. II and IV
- D. III and IV
- 12. Predict the effect the substituent attached to the benzene ring below would have on electrophilic aromatic substitution reactions?


- A. ortho/para director, activator
- B. ortho/para director, deactivator
- C. meta director, activator
- D. meta director, deactivator
- 13. In the Friedel-Crafts alkylation of benzene, dialkylation is often a significant by-product. In the Friedel-Crafts acylation of benzene, diacylation is <u>not</u> a significant by-product. Which of the following is the primary reason for this difference?
 - A. Alkyl groups activate the ring to further substitution, acyl groups deactivate it.
 - B. Alkyl groups are less sterically hindered than acyl groups.
 - C. Acyl cations are more difficult to make with Lewis acids.
 - D. Unlike acyl cations, carbocations can undergo rearrangements.
- 14. Which of the following is the best method to make *n*-butylbenzene?
 - A) benzene + CH₃CH₂CH₂CH₂Cl/AlCl₃
 - B) benzene + CH₃CH₂CH=CH₂/H₂SO₄

C) (1) benzene + CH₃CH₂CCl/AlCl₃ (2) H₂NNH₂/KOH, heat

- D) (1) benzene + CH₃CH₂CH₂CH₂OH/H₂SO₄
 - A. A
 - B. B
 - C. C
 - D. D
- 15. What is the major product of the following reaction?

- A. 4-ethyl-2-nitrophenol
- B. 4-ethyl-3-nitrophneol
- C. 1-ethyl-4-nitrobenzene
- D. 4-nitrophenol

16. Based on resonance theory, what is the approximate charge on the indicated carbon?

- A. +1
- B. +0.50
- C. +0.33
- D. +0.20

17. Which isomer of dichlorobenzene gives a single mononitration product?

- A. ortho
- B. meta
- C. para
- D. none of them

18. Arrange the following compounds in order of increasing reaction rate with HNO₃/H₂SO₄.

- I. $C_6H_5CH=O$
- II. C₆H₅OCH₃
- III. C₆H₅Br
- IV. C₆H₅CH₃

- A. I < III < IV < II
- B. I < IV < III < II
- $C. \hspace{1.5cm} III < I < II < IV$
- $D. \qquad III < I < IV < II$

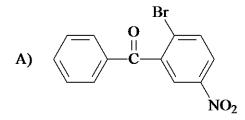
19. Salicylic acid reacts with two equivalents of ICl to give one of the products below. Which one is it? (Hint: Cl is more electronegative than I.)

$$CO_2H$$
 CO_2H CO_2

- A. A
- B. B
- C. C
- D. D

20. Identify the preferred site(s) of electrophilic attack on the following compound.

ring 1 ring 2


- A. ortho/para positions on ring 1
- B. meta position on ring 1
- C. ortho/para positions on ring 2
- D. meta position on ring 2
- 21. Which of the following is the best method to make *meta*-bromoethylbenzene from benzene?
 - A) (1) benzene + CH₃CH₂Cl/AlCl₃ (2) Br₂/FeBr₃
 - B) (1) benzene + $Br_2/FeBr_3$ (2) $CH_3CH_2CI/AlCl_3$
 - C) (1) benzene + CH₃CCl/AlCl₃ (2) Zn(Hg), HCl (3) Br₂/FeBr₃
 - D) (1) benzene + CH₃CCl/AlCl₃ (2) Br₂/FeBr₃ (3) Zn(Hg), HCl
 - A. A
 - B. B
 - C. C
 - D. D
- 22. Which one of the following compounds undergoes electrophilic aromatic sulfonation at the fastest rate?

A)
$$CH_3$$
 CH_3 CI CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

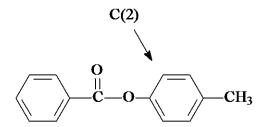
- A. A
- B. B
- C. C
- D. D
- 23. What is the product of the following series of reactions?

$$\begin{array}{c|c}
\hline
 & HNO_3 \\
\hline
 & H_2SO_4
\end{array}$$

$$\begin{array}{c|c}
\hline
 & Br_2 \\
\hline
 & FeBr_3
\end{array}$$

B)
$$C \longrightarrow C \longrightarrow NO_2$$

$$C) \qquad \begin{array}{c} O \\ \parallel \\ C \end{array} \qquad \begin{array}{c} Br \\ \parallel \\ NO_2 \end{array}$$

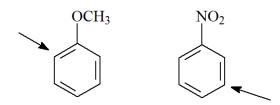

$$D) \qquad \qquad O \\ C \qquad \qquad \bigcup_{\text{Br}} NO_2$$

- A. A
- B. B
- C. C
- D. D
- 24. Nitration of chlorobenzene has a reaction rate which is ______ than the nitration rate of benzene and gives primarily the _____ product(s).
 - A. faster, ortho/para
 - B. faster, meta
 - C. slower, ortho/para
 - D. slower, meta
- 25. What is the major product of the Friedel-Crafts alkylation of benzene with (CH₃)₂CHCH₂Cl and AlCl₃?
 - A. isobutylbenzene
 - B. *tert*-butylbenzene
 - C. *sec*-butylbenzene
 - D. butylbenzene
- 26. Where would the compound shown below undergo bromination with Br₂/FeBr₃?

ring 1

ring 2

- A. ortho/para position on ring 1
- B. meta position on ring 1
- C. ortho/para position on ring 2
- D. meta position on ring 2
- 27. Where would the compound shown below undergo bromination with NBS and benzoyl peroxide?

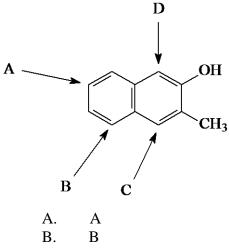

ring 1 ring 2

- A. ortho/para position on ring 1
- B. meta position on ring 1
- C. C(2) position on ring 2
- D. methyl group on ring 2
- 28. Based on directing effects in electrophilic aromatic substitution reactions, predict the major addition product of the following reaction.

$$\begin{array}{ccc} H_3C & CF_3 \\ C = C & & HC1 \\ H & H & \end{array}$$

- A) CH₃CH₂CHCF₃ Cl
- B) CH₃CHCH₂CF₃
- C) CH₃CH₂CH₂CF₃
- D) CH₃CHCHCF₃

 Cl Cl
 - A. A
 - B. B
 - C. C
 - D. D
- 29. Which one of the following substituents is deactivating and ortho-para directing in electrophilic aromatic substitution reactions?
 - A. -Cl
 - B. $-N(CH_3)_2$
 - C. - CO_2H
 - D. -CH=CH₂
- 30. Consider the partial rate factors for electrophilic aromatic substitution at the indicated position of anisole and nitrobenzene. Which of the following correlates to these partial rate factors?

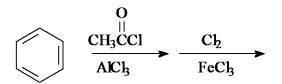

	anisole	nitrobenzene
A) partial rate factor	>1	>1
B) partial rate factor	>1	<1
C) partial rate factor	<1	>1
D) partial rate factor	<1	<1

- A. A
- B. B
- C. C
- D. D
- 31. Starting with toluene, which of the following is the best synthesis of *meta*-bromobenzoic acid?
 - A) (1) Br₂, FeBr₃
- (2) K₂Cr₂O₇, H₂SO₄ (heat)

B) (1) Br_2 , hv

- $(2) K_2Cr_2O_7, H_2SO_4$ (heat)
- C) (1) K₂Cr₂O₇, H₂SO₄ (heat)
- (2) Br_2 , $FeBr_3$
- D) (1) $K_2Cr_2O_7$, H_2SO_4 (heat)
- (2) Br_2 , $h\nu$

- A. A
- B. B
- C. C
- D. D
- 32. Predict which position of the naphthalene compound below is the most reactive with electrophiles in electrophilic aromatic substitution?



- C. C
- D. D
- 33. Starting with toluene, which of the following is the best method to make the ether shown below? (Assume you can separate ortho and para isomers.)

A)
$$\sim$$
 CH₃ \sim NBS, heat \sim C₆H₅O'Na⁺ \sim Cl₂/FeCl₃ \sim benzoyl peroxide

D)
$$CH_3 \xrightarrow{Cl_2/FeCl_3} \xrightarrow{NBS, heat} \xrightarrow{NaOH, H_2O} \xrightarrow{C_6H_5Br} \xrightarrow{benzoyl} \xrightarrow{peroxide}$$

- A. A
- B. B
- C. C
- D. D
- 34. Identify the major product(s) of the reaction sequence shown below.

- A. *ortho* and *para*-chloroacetophenone
- B. *meta*-chloroacetophenone
- C. ortho and para-chlorobenzaldehyde
- D. *meta*-chlorobenzaldehyde
- 35. Which of the following is not a valid resonance form of the intermediate species in the reaction shown below?

36. How many mononitration products are possible in the nitration of the compound shown below?

D.

A. only 1

D

- B. 2
- C. 3
- D. 4

ACS Review Reactions of Arenes - Electrophilic Aromatic Substitution $_{\mbox{\scriptsize KEY}}$

- 1. c
- 2. D
- 3. в
- 4. c
- 5. c
- 6. c
- 7. D
- 8. B
- 9. в
- 10. A
- 11. c
- 12. D
- 13. A
- 14. c
- 15. A
- 16. c
- 17. c
- 18. A
- 19. D 20. C
- 21. D
- 22. D
- 23. в
- 24. с
- 25. в
- 26. A
- 27. d
- 28. в
- 29. A 30. B
- 50. в
- 31. c
- 32. D
- 33. в 34. в
- 35. A
- 36. в